Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
Technical Paper

Optical Diagnostics to Study Hydrogen/Diesel Combustion with EGR in a Single Cylinder Research Engine

2023-08-28
2023-24-0070
In order to reduce fuel consumption and polluting emissions from engines, alternative fuels such as hydrogen could play an important role towards carbon neutrality. Moreover, dual-fuel (DF) technology has the potential to offer significant improvements in carbon dioxide emissions for transportation and energy sectors. The dual fuel concept (natural gas/diesel or hydrogen/diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Journal Article

Hydrogen/Diesel Combustion Analysis in a Single Cylinder Research Engine

2022-09-16
2022-24-0012
The application of an alternative fuel such as hydrogen to internal combustion engines is proving to be an effective and flexible solution for reducing fuel consumption and polluting emissions from engines. An easy to use and immediate application solution is the dual fuel (DF) technology. It has the potential to offer significant improvements in carbon dioxide emissions from light compression ignition engines. The dual fuel concept (natural gas / diesel or hydrogen / diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

Influence of Microstructure on CFD Simulation of Water Removal in a PEM FC Channel

2024-04-09
2024-01-2181
Water removal from Proton Exchange Membrane (PEM) Fuel Cell (FC) mainly involves two phenomena: some of the emerging droplets will roll on the Gas Diffusion Layer (GDL), others may impact channel walls and start sliding along the airflow direction. This different behaviour is linked to the hydrophobic/hydrophilic nature of the surface the water is moving on. In this paper, the walls of the channel of a FC were characterized by applying optical techniques. The deposition of droplets on the channel wall led to an evaluation of the proper range for Contact Angle Hysteresis (CAH = 55° - 45°), and due to the high wettability of the surface, droplets dimension was defined with a dimensionless parameter B/H. Under high crossflow condition (15 m/s) a sliding behaviour was observed. The channel features determined through image processing were used as boundary conditions for a 2D CFD two phase simulation employing the Volume of Fluid (VOF) model to keep track of the fluids interface.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
X